Uniformity and homogeneity-based hierarchical clustering
نویسندگان
چکیده
This paper presents a clustering algorithm for dot patterns in n-dimensional space. The n-dimensional space often represents a multivariate (nf -dimensional) function in a ns-dimensional space (ns + nf = n). The proposed algorithm decomposes the clustering problem into the two lower dimensional problems. Clustering in nf -dimensional space is performed to detect the sets of dots in n-dimensional space having similar nf -variate function values (location based clustering using a homogeneity model). Clustering in nsdimensional space is performed to detect the sets of dots in n-dimensional space having similar interneighbor distances (density based clustering with a uniformity model). Clusters in the n-dimensional space are obtained by combining the results in the two subspaces.
منابع مشابه
Using Clustering and Factor Analysis in Cross Section Analysis Based on Economic-Environment Factors
Homogeneity of groups in studies those use cross section and multi-level data is important. Most studies in economics especially panel data analysis need some kinds of homogeneity to ensure validity of results. This paper represents the methods known as clustering and homogenization of groups in cross section studies based on enviro-economics components. For this, a sample of 92 countries which...
متن کاملDetermination of the Best Hierarchical Clustering Method for Regional Analysis of Base Flow Index in Kerman Province Catchments
The lack of complete coverage of hydrological data forces hydrologists to use the homogenization methods in regional analysis. In this research, in order to choose the best Hierarchical clustering method for regional analysis, base flow and related index were extracted from daily stream flow data using two parameter recursive digital filters in 43 hydrometric stations of the Kerman province. Ph...
متن کاملAssessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences
Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کامل